

Creating Loaders & D umpers - C rackers G uide to
Program F low Control

B y [yAtE s]

June 26, 2004

[http://w w w .yates2k.net] [http://w w w .reteam.org]

If you did not find any files accompanying this paper you can dow nload them at:

h ttp://w w w .yates2k.net/lad_files.rar
or http://w w w .w oodmann.net/yates/lad_files.rar

IntroductionIntroductionIntroductionIntroduction

So you w ant to unpack a program, aspack? asprotect? even safedisc? To accomplish such a
task a degree of know ledge is needed in many, many different areas, over the years I have
been w riting small tutorials on these areas before I ever w rite a comprehensive tutorial on a
single subject.

Ok, so one thing that I’ve noticed is that 'new bies' have no sense of how they're going to
carry out all the tasks needed to repair a exe, most plan to just dump an exe image and try
and fix bits as they go along, but a much more structured w ay can be taken and this is to
create a 'dumper' w hich effectively launches your target exe and halts it in certain places so
you can read some memory areas and save data, and eventually end up at OE P w hen you
can dump the sections to disk and make your necessary changes.

Ok this is common know ledge to 80% of crackers excluding the ones that message me ;-) so I
doubt many people w ill be reading this paper, w ith that let’s begin one of my rare essays
hehe.

H ow the demoH ow the demoH ow the demoH ow the demonnnnstration w ill happenstration w ill happenstration w ill happenstration w ill happen

For this example I’m going to take a U PX packed notepad and show you how to code a
program to stop it at the point w here the imports are being resolved, then I’m going to
output the data to screen as they get resolved just as an example, at this point really if you
w ere unpacking the exe you w ould grab the data and produce a fresh import table. After
outputting the import data I’m going to then let the program continue to OE P, halt it there
and show a msgbox.

E xaming the targetE xaming the targetE xaming the targetE xaming the target

Ok before I explain the process of controlling the program flow let’s look at our target and
find w hat w e have to do. I've protected my notepad w ith upx and took 5mins to study how
it w orks. I'll now briefly explain:

U PX entry point looks like this,

U PX 1:01011651 mov esi, offset dw ord_100D 000
U PX 1:01011656 lea edi, [esi-0C000h]
U PX 1:0101165C push edi
U PX 1:0101165D or ebp, 0FFFFFFFFh
U PX 1:01011660 jmp short loc_1011672

Now if you scroll dow n 4 pages in ida you can clearly see the OE P

U PX 1:0101179E loc_101179E : ; COD E X R E F : start+110_j
U PX 1:0101179E popa ; resore registers
U PX 1:0101179F jmp near ptr dw ord_1006420
U PX 1:0101179F start endp

So 0101179F is our final destination.

The import loader code looks like this

U PX 1:0101175C G E T_D LLNAM E _AND _TH U NK : ; COD E X R E F : start+12E _j
U PX 1:0101175C mov eax, [edi] ; NO
U PX 1:0101175E or eax, eax
U PX 1:01011760 jz short loc_101179E
U PX 1:01011762 mov ebx, [edi+4]
U PX 1:01011765 lea eax, [eax+esi+11CF4h]
U PX 1:0101176C add ebx, esi
U PX 1:0101176E push eax ; D LL NAM E
U PX 1:0101176F add edi, 8
U PX 1:01011772 call dw ord ptr [esi+11D A8h] ; LOAD LIB R AR Y
U PX 1:01011778 xchg eax, ebp
U PX 1:01011779
U PX 1:01011779 B U ILD _TH U NK : ; COD E X R E F : start+146_j
U PX 1:01011779 mov al, [edi]
U PX 1:0101177B inc edi
U PX 1:0101177C or al, al
U PX 1:0101177E jz short G E T_D LLNAM E _AND _TH U NK ; NO
U PX 1:01011780 mov ecx, edi
U PX 1:01011782 push edi ; PTR ASCII NAM E
U PX 1:01011783 dec eax
U PX 1:01011784 repne scasb
U PX 1:01011786 push ebp
U PX 1:01011787 call dw ord ptr [esi+11D ACh] ; G E TPR OCAD D R E SS
U PX 1:0101178D or eax, eax ; AD D R E SS
U PX 1:0101178F jz short loc_1011798
U PX 1:01011791 mov [ebx], eax ; W R ITE TO TH U NK
U PX 1:01011793 add ebx, 4
U PX 1:01011796 jmp short B U ILD _TH U NK

It starts off by reading a block of data stored in E D I, e.g.

U PX 1:01010000 dd 0FCh ; D LL NAM E POINTE R
U PX 1:01010004 dd 80h ; TH U NK STAR T

U PX 1:01010008 db 1
U PX 1:01010009 aLocalunlock db 'LocalU nlock',0
U PX 1:01010015 db 1
U PX 1:01010016 aG lobalunlock db 'G lobalU nlock',0
U PX 1:01010023 db 1
U PX 1:01010024 aG loballock db 'G lobalLock',0
U PX 1:0101002F db 1
U PX 1:01010030 aG etlasterror db 'G etLastE rror',0

As you can see by my comments the structure is pointer to name, thunk location and then a
list of functions for that dll. The dll pointer is fixed up and read and U PX loads the library
here,

U PX 1:0101176E push eax ; D LL NAM E
U PX 1:0101176F add edi, 8
U PX 1:01011772 call dw ord ptr [esi+11D A8h] ; LOAD LIB R AR Y

It then reads the 80h and adds the section base to it and puts it in E B X this w ill be the thunk
for the current dll and w here all the resolved address for the api list w ill be placed, if you
understand import tables then you know this is the point you should replace the api address
w ith a pointer to the name. Anyw ay, so then further dow n it reads the api name then
performs getprocaddress

U PX 1:01011782 push edi ; PTR ASCII NAM E
U PX 1:01011783 dec eax
U PX 1:01011784 repne scasb
U PX 1:01011786 push ebp ; current dll base
U PX 1:01011787 call dw ord ptr [esi+11D ACh] ; G E TPR OCAD D R E SS
U PX 1:0101178D or eax, eax ; AD D R E SS
U PX 1:0101178F jz short loc_1011798
U PX 1:01011791 mov [ebx], eax ; W R ITE TO TH U NK

Ok so for fun w e w ill stop the program at 01011782, output the current function then
continue to 0101178D and output the api address :-)

ObObObObjectivesjectivesjectivesjectives

Ok here is our mission plan:

* Start E xecutable
* place a stop point at oep - 0101179E
* stop at 0101176C print the dll name
* stop at 01011780 print the ascii name
* stop at 01011796 print the api address
* loop these stop points until w e get to oep

I’m going to be show ing my examples in ASM using the compiler TASM , I w ill also try and
include C++ source codes in the final source for you new generation coders ;-)

TheoryTheoryTheoryTheory

In order to control the program the idea is w e start the application in a suspended mode
then w e w rite into the programs memory the bytes 0E B h 0FE h w here w e w ant to stop,
these 2 bytes are the opcodes for JM P -2 and since the instruction is 2 bytes long this
causes a constant loop and the instruction keeps executing it self, so w e insert these w here
w e w ant to stop then resume the program, if w e w ait a few milliseconds the program w ill
become trapped in this loop, w e can check w hat address is currently being executed using
an API, so once w e detect w e've stopped at our target address w e can then take action.

The APIs you need to know are the follow ing:

CreateProcess - Load an external executable.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/createprocess.asp

R esumeThread / SuspendThread - U sed to stop and start the process thread in its current
state
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/resumethread.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/suspendthread.asp

W riteProcessM emory / R eadProcessM emory - U sed to insert our JM P -2 and read process
memory
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/debug/base/w riteprocessmemory.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/debug/base/readprocessmemory.asp

G etThreadContext / SetThreadContext - U sed to get the R egister values from the running
process.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/debug/base/getthreadcontext.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/debug/base/setthreadcontext.asp

PraticePraticePraticePratice

* place a stop point at oep - 0101179E
* stop at 0101176C print the dll name
* stop at 01011780 print the ascii name
* stop at 01011796 print the api address

So w e have 4 stop points, it important to plan w hen placing these, in a proper cracking
process you might perhaps inject a dll into the process (see my hooking import table tut) and
then patch in jumps at the hook points so the target jumps into your dll and performs some
operations and jumps back.

In this case w e are inserting E B FE into the exe, but w e are inserting them inside a loop that
resolves imports. W hen w e place the E B FE w e are destroying data, so it’s a good idea to
find a suitable place to put them. For example, over a 2 byte instruction w e can emulate.
Let’s now look for good places to put our hooks.

1. OE P.1. OE P.1. OE P.1. OE P.

It doesnt matter w here w e place it since w e are terminating the program w hen w e reach it
so let’s choose: 0101179E 61 popa

2. D LLNAM E2. D LLNAM E2. D LLNAM E2. D LLNAM E

U PX 1:0101176C 01 F3 add ebx, esi
U PX 1:0101176E 50 push eax ; D LL NAM E

0101176C is a good place because w e can read E AX to get the dll, and also grab ebx, esi
Add them and insert the result back into ebx, ok get the idea?

3. ASC II NAM E3. ASC II NAM E3. ASC II NAM E3. ASC II NAM E

U PX 1:01011780 89 F9 mov ecx, edi
U PX 1:01011782 57 push edi ; PTR ASCII NAM E

Same again 01011780 w ill do, w e can emulate this mov

4. API AD D R E SS4. API AD D R E SS4. API AD D R E SS4. API AD D R E SS

U PX 1:01011787 FF 96 AC 1D 01+ call dw ord ptr [esi+11D ACh] ;
G E TPR OCAD D R E SS
U PX 1:0101178D 09 C0 or eax, eax ; AD D R E SS
U PX 1:0101178F 74 07 jz short loc_1011798
U PX 1:01011791 89 03 mov [ebx], eax ; W R ITE TO TH U NK
U PX 1:01011793 83 C3 04 add ebx, 4
U PX 1:01011796 E B E 1 jmp short B U ILD _TH U NK

The address goes into eax after getprocaddress so I’m going to choose
01011796 E B E 1 jmp short B U ILD _TH U NK for my hook and update eip w ith the
address of B U ILD _TH U NK to simulate the jump w hen I’m done.

C oding the programC oding the programC oding the programC oding the program

Ok I think the important bit is over, now w e need to code this idea, now I’m no coding
teacher, but perhaps for some of you coding is new , and it’s important to find a language
your going to be happy learning and using, w hilst coding the program you w ould normally
code small sections first and test them but since its going to be hard to put this dow n on
paper, I’m now going to paste my source code file in sections and explain it as much as I
can, you may learn to code in a similar style to try port the idea to another language, or
perhaps your an excellent coder anyw ay, but I never assume anything :-)

Ok the source file is upx_dump.asm you should open this as I go through it, the first top bit
is just the defining of some APIS and Constants, then the .data section sets up some
variables w e need, w e w ill see them in use as w e go along.

The first part is that w e Load the notepad upx file but in suspended mode, this means the
program isn’t running but all of its memory is mapped.

Now w e patch our E B FE into all the addresses that w e decided on earlier, take a look at the
code below , if your new to using these apis you should look at the M SN links I provided
earlier w hich show w hat all the parameters are, but it should be fairly straight forw ard.

Call CreateProcessA,o progname,0,0,0,0,CR E ATE _SU SPE ND E D ,0,0,o tStartupInfo,o
tProcessInfo

mov eax, 0101179E h ; OE P
call W riteProcessM emory,[tProcessInfo],eax,o H ALT_COD E ,H ALT_SIZE ,0

mov eax, 0101176Ch ; D LL NAM E H OOK
call W riteProcessM emory,[tProcessInfo],eax,o H ALT_COD E ,H ALT_SIZE ,0

mov eax, 01011780h ; ASCII NAM E H OOK
call W riteProcessM emory,[tProcessInfo],eax,o H ALT_COD E ,H ALT_SIZE ,0

mov eax, 01011796h ; API AD D R E SS H OOK
call W riteProcessM emory,[tProcessInfo],eax,o H ALT_COD E ,H ALT_SIZE ,0

Ok so now our process is loaded and w e our hooks patched in. The next stage is let the
process run, then code a M AIN B OD Y w hich w ill be a loop w here G etThreadContext is
constantly called, G etThreadContext w ill retrieve all the running processes registers, so if w e
are calling this in a loop w e can monitor w hen E IP hits one of our hooks then take action,
easy eh? Ok here it is:

call R esumeThread, [tProcessInfo+4]

Call Sleep, 100h
mov [my_context], 00010000h+1+2+4+8+10h ; SE T U P PE R M ISSIONS
ContextLoop:
 call G etThreadContext, [tProcessInfo+4], o my_context
 test eax, eax
 jz CE R R
 mov eax, [my_context+R E G _E IP]

 cmp eax, 0101179E h ; CH E CK ING E IP
 jz OE P_R E ACH E D

 cmp eax, 0101176Ch
 jz D LLNAM E _H OOK E D

 cmp eax, 01011780h
 jz ASCIINAM E _H OOK E D

 cmp eax, 01011796h
 jz APIAD D R _H OOK
jmp ContextLoop

Pretty straight forw ard I think that is, now something to note is that I’ve hardcoded the
addresses, perhaps sometimes it is best to subtract the imagebase then get the imagebase of
the running program and add them to our values just in case of relocation, this w ould be
essential for example if w e had hooked after some loadlibrary and got the base address and
w ere planning to place more hooks in this dll, but anyw ay I kept it simple.

Now w e have a main body, now run through the process in your head, the first thing that
w ill happen is w e w ill get a hooked detected at the D LLNAM E , since if you checked the upx
code snipped at the start the first thing upx does is load a dll, so let’s code the
D LLNAM E _H OOK E D procedure.

D LLNAM E _H OOK E D :

call SuspendThread, [tProcessInfo+4]
call G etThreadContext, [tProcessInfo+4], o my_context

mov eax, [my_context+R E G _E AX] ; G E T TH E CONTE NTS
OF E AX (PTR TO ASCII D LL)
call R eadProcessM emory,[tProcessInfo],eax,o myB uffer,30,0 ; R E AD D LL NAM E FR OM PTR

; emulate U PX 1:0101176C add ebx, esi

mov ebx, [my_context+R E G _E B X]
mov esi, [my_context+R E G _E SI]
add ebx, esi
mov [my_context+R E G _E B X], ebx

; skip instruction
mov eax, [my_context+R E G _E IP]
add eax, 2
mov [my_context+R E G _E IP], eax

; set context
call SetThreadContext, [tProcessInfo+4], o my_context

call R esumeThread, [tProcessInfo+4]

call dll1
db 13,10,13,10,'-> Loading D LL ',0
dll1:
call dbg_string
call dbg_string, o myB uffer
call dbg_string, o new line
jmp ContextLoop

U PX 1:0101176C 01 F3 add ebx, esi
U PX 1:0101176E 50 push eax ; D LL NAM E

Ok here w e stop the process w ith suspendthread so w e stop the cpu going crazy, then w e get
the context so have all the current registers, now the dll name is stored in E AX , so w e read

this value from the context structure, now w e have a pointer to the dllname in the other
process, so w e read from this address into a buffer.

Next w e need to fix the instruction w e destroyed w hich w as AD D E B X , E SI, now if you never
needed to hook this point again you could patch the instruction back but since w e w ant to
break here again w e must emulate it, so I grab ebx and esi from the context struct add them
and insert it back into ebx, then I also get the eip value and add 2, this is so w e skip the E B
FE and start at the PU SH , then i use SetThreadContext to update the process's memory,
R esumeThread then sets it back on its w ay, i've then used my ow n internal functions dbg_xx
to w rite out text and the contents of the buffer into a file called debug.txt. Now w e jump back
to our main context checking loop.

The next thing that w ill happen is w e'll break on the ASCIINAM E _H OOK E D , so let’s code
that, you can almost copy paste the above function and make minor tw eaks.

ASCIINAM E _H OOK E D :
call SuspendThread, [tProcessInfo+4]
call G etThreadContext, [tProcessInfo+4], o my_context

mov eax, [my_context+R E G _E D I] ; G E T TH E CONTE NTS
OF E D I(PTR TO ASCII API)
call R eadProcessM emory,[tProcessInfo],eax,o myB uffer,200,0 ; R E AD D LL NAM E
FR OM PTR

; emulate U U PX 1:01011780 89 F9 mov ecx, edi

mov edi, [my_context+R E G _E D I]
mov [my_context+R E G _E CX], edi

; skip instruction
mov eax, [my_context+R E G _E IP]
add eax, 2
mov [my_context+R E G _E IP], eax

; set context
call SetThreadContext, [tProcessInfo+4], o my_context

call R esumeThread, [tProcessInfo+4]

call dll2
db ' FU NC : ',0
dll2:
call dbg_string
call dbg_string, o myB uffer
jmp ContextLoop

U PX 1:01011780 89 F9 mov ecx, edi
U PX 1:01011782 57 push edi ; PTR ASCII NAM E

Ok so the same as before, stop the process and then get the pointer to the ascii name from
edi and read it into our buffer, now I emulate the M OV E CX , E D I and update E IP

Next is the API function address hook APIAD D R _H OOK

APIAD D R _H OOK :
call SuspendThread, [tProcessInfo+4]
call G etThreadContext, [tProcessInfo+4], o my_context

mov eax, [my_context+R E G _E AX] ; G E T TH E CONTE NTS
OF E D I(PTR TO ASCII API)

call dll3
db 9,9,9,'AD D R : ',0
dll3:
call dbg_string
call dbg_dw ord,eax,0
call dbg_string, o new line

; emulate 01011796 E B E 1 jmp short B U ILD _TH U NK

mov eax, 01011779h
mov [my_context+R E G _E IP], eax

; set context
call SetThreadContext, [tProcessInfo+4], o my_context

call R esumeThread, [tProcessInfo+4]
jmp ContextLoop

U PX 1:01011787 FF 96 AC 1D 01+ call dw ord ptr [esi+11D ACh] ;
G E TPR OCAD D R E SS
U PX 1:0101178D 09 C0 or eax, eax ; AD D R E SS
U PX 1:0101178F 74 07 jz short loc_1011798
U PX 1:01011791 89 03 mov [ebx], eax ; W R ITE TO TH U NK
U PX 1:01011793 83 C3 04 add ebx, 4
U PX 1:01011796 E B E 1 jmp short B U ILD _TH U NK

Since the api address is E AX all I need do is get the value from the context structure, then
w e had our hook at 01011796, so I emulate the 'jmp short B U ILD _TH U NK ' by placing the
address of B U ILD _TH U NK into E IP and continue.

Last of all w e need some code for OE P_R E ACH E D

OE P_R E ACH E D :

call M essageB oxA,0,o msgOE P,o msgok, 0

call TerminateProcess, [tProcessInfo]

jmp E nd_Process

Just a simple messagebox to say hello :) and the end of the code looks like,

CE R R :
 call M essageB oxA,0,o msgcontext,o msgerr, 0

E nd_Process:
call exitprocess, 0

end main

Ta da! That’s it, now since w e are messing around w ith a program during a small loop that
resolves the imports it considerably slow s the app dow n, if you test the example it w ill take
about 1 minute until the message box appears, click ok then view debug.txt

I've provided ASM and CPP code, and both compiled exes for you to test, the CPP one seems
to run much faster, it also screen output, reading the CPP code is probably easier to
understand than the ASM as you can see the program structure much better.

Now don’t take this tutorial as a literal w ay of cracking something, it merely describes a
common technique used my dumpers, you should reverse your target application and find
good hook points, like after some decryption, then make use of your dumper to run through
the target collecting information needed for a final unpacked target, so have fun and w atch
out for CR Cs ;-)

regards,

 yates.

yates@ reverse-engineering.info

