StarForce 3 - Brief iInsight into a hidden world.
By [YyAtEs]
[http://www.yates2k.net] [http://www.reteam.org]

These notes are intended for anyone wishing to study the working
elements of this protection. It’s very brief and unhelpful. :)

StarForce 3 executes most of its code in a virtual machine. The
virtual machine has a set of instructions. Below you can find an
example instruction. In order to find out what makes this protection
strong you need to spend 30 mins tracing through several instructions
and analyzing their operations. You will quickly find StarForce has
what seems to be a binded flow of instructions. In other words you
cannot inspect the opcode data, as it appears dynamic.

The fact is, there is structure but its so large its easy to be over
come by the amount of work one would have to do, as you trace over each
"instruction®™ the opcode data will be extracted in different ways. You
must learn each way, which is probably only feasible with good
heuristics; however that’s all boring ;-) its much better to study a
few instructions to see how it all works.

n*joy

-yAtEs

StarForce Mov Instruction

.sforce:00BA28C8 sub_ BA28C8 proc near

.sforce:00BA28C8 mov eax, [edi+8]

.sforce:00BA28CB add eax, [edi+l14h] ; Add VM Base
to Opcode Ptr(EIP)

.sforce:00BA28CE mov ecx, [eax] ; Get Opcode

Data Dword 1 - 0x98004200

.sforce:00BA28D0 mov edx, [eax+4] ; Get Opcode

Data Dword 2 - 0x08600135

.sforce:00BA28D3 add dword ptr [edi+14h], 8 ;

Increase EIP

.sforce:00BA28D7

.sTtorce:00BA28D7 ########## Extract Data for Metaphorsis
HHAHHH

.sforce:00BA28D7 .

.sforce:00BA28D7 push ecx ; Save Opcode
1

-sforce:00BA28D8 .

-sforce:00BA28D8 mov eax, edx ; Get Opcode 2
.sforce:00BA28DA .

-sforce:00BA28DA shl eax, 4

.sforce:00BA28DD shr eax, 1Dh ; extract bits

28,27,26 - EAX = 04
.sforce:00BA28EO .

.sforce:00BA28EOD
.sforce:00BA28E2
.sforce:00BA28E2
.sforce:00BA28E5
23,24,25,26,27 -
.sforce:00BA28ES
.sforce:00BA28ES8
.sforce:00BA28EA
.sforce:00BA28EA
.sforce:00BA28ED
21,22,23,24,25 -
.sforce:00BA28FO0O
.sforce:00BA28FO
.sforce:00BA28FO
HHHHHH
.sforce:00BA28FO
.sforce:00BA28FO0O
.sforce:00BA28F2
.sforce:00BA28F4
.sforce:00BA28F7
.sforce:00BA28F9
.sforce:00BA28FC
.sforce:00BA28FE
.sforce:00BA2901
.sforce:00BA2903
.sforce:00BA2906
.sforce:00BA2908
.sforce:00BA290B
STREAM
.sforce:00BA290D
.sforce:00BA2910
STREAM
.sforce:00BA2912
Opcode 1
.sforce:00BA2914

.sforce:00BA2914
.sforce:00BA2914
sub_BA28C8+2A_j
.sforce:00BA2914
.sforce:00BA2918
Opcode 1
.sforce:00BA291A

.sforce:00BA291A
.sforce:00BA291A
sub_BA28C8+2F j
.sforce:00BA291A
.sforce:00BA291E
Opcode 1
.sforce:00BA2920

.sforce:00BA2920
.sforce:00BA2920
sub_BA28C8+34 j

.sforce:00BA2920
.sforce:00BA2924

EBX = 0O

ECX

I
()]

mov

shl
shr

mov

shl
shr

ebx, ecx

ebx, 5
ebx, 1Bh

ecx, edx

ecx, 7
ecx, 1Bh

HiH#HH A START STREAM/METAPHORSIS

eax, eax
short loc BA2914
eax, 1
short loc_BA291A
eax, 2
short loc _BA2920
eax, 3
short loc BA2926
eax, 4
short loc_BA292B
eax, 5
short loc BA2930

eax, 6
short loc_BA293A

short loc BA2944

; Get Opcode 1

; extract bits

; Get Opcode 2

; extract bits

ENCODING

; EIP STREAM
; EIP STREAM
; EIP STREAM
; EIP STREAM

> DESTINATION

; SOURCE

; Restore

loc_BA2914:

[edi+24h], ecx
short loc_BA2944

; CODE XREF:

; Restore

loc BA291A:

[edi+24h], ecx
short loc_BA2944

; CODE XREF:

; Restore

loc_BA2920:

btc
Jmp

[edi+24h], ecx
short loc BA2944

; CODE XREF:

; Restore

Opcode 1

.sforce:00BA2926 ; ---————————————

.sforce:00BA2926
.sforce:00BA2926 loc BA2926:
sub_BA28C8+39_j
.sforce:00BA2926
.sforce:00BA2929

Opcode 1

.sforce:00BA292B ; ————————

.sforce:00BA292B
.sforce:00BA292B loc BA292B:
sub_BA28C8+3E_j
.sforce:00BA292B
.sforce:00BA292E

Opcode 1

-sforce:00BA2930 ; —-——————————

.sforce:00BA2930
.sforce:00BA2930 loc BA2930:
sub_BA28C8+43 j
.sforce:00BA2930
.sforce:00BA2933
.sforce:00BA2935
.sforce:00BA2938

Opcode 1

.sforce:00BA293A ; - —\—————— -

.sforce:00BA293A
.sforce:00BA293A loc BA293A:
sub_BA28C8+48 j
.sforce:00BA293A
.sforce:00BA293D
.sforce:00BA293F
.sforce:00BA2942
.sforce:00BA2944

R R R R A R A A

B

.sforce:00BA2944
.sforce:00BA2944 loc BA2944:
sub_BA28C8+4A_j
.sforce:00BA2944
sub_BA28C8+50_j ...
.sforce:00BA2944

Opcode 1

.sforce:00BA2945
VMRAM/REGISTERBASE Into EBX
.sforce:00BA2947 .
.sforce:00BA2947
.sforce:00BA2949

shl
or
mov

Jmp

pop

mov

mov

; CODE XREF:

byte ptr [edi+24h], cl
short loc BA2944 ; Restore

; CODE XREF:

byte ptr [edi+24h], cl
short loc_BA2944 ; Restore

; CODE XREF:

ecx, 5

ebx, ecx

[edi+0Ch], ebx

short loc_BA2944 ; Restore

; CODE XREF:

ecx, 5

ebx, ecx
[edi+10h], ebx
short $+2

; CODE XREF:
ecx ; Restore
ebx, [edi] ;
esi, edx ; Get Opcode 2

-sTorce:00BA2949 #####H####H# GET DESTINATION REGISTER #H##HHHAHHHH

.sforce:00BA2949
.sforce:00BA2949
Source Register
.sforce:00BA294C
.sforce:00BA294F

shl

shr
add

esi, 1l4h ; Decode
esi, 18h ; Bits 5->12
esi, [edi+10h] ; ESI = 0x13 +

[EDI+10h] = 0x23 SRC.REG+SRC_STREAM = REG 0x36

.sforce:00BA2952 and esi, OFFh ; 1 Byte Reg
.sforce:00BA2952

.sTorce:00BA2952 #HH#HHHHHAHHHHHHHHHHHHIHEH I
-sforce:00BA2958 .

.sforce:00BA2958 mov esi, [ebx+esi*4] ; REG * 4 =
REG_D8 + vmbase for location of data

-sforce:00BA295B .

.sTorce:00BA295B #####H### GET SOURCE REGISTER ###HHHHHHHHHIHHHHIHH
-.sforce:00BA295B

.sforce:00BA295B mov eax, ecx ; Get Opcode 1
-sforce:00BA295D .

-sforce:00BA295D shl eax, OFh ; Decode
Destination Register

.sforce:00BA2960 shr eax, 18h ; Bits 10->18
.sforce:00BA2963 add eax, [edi+OCh] ; EAX = Ox21 +
[EDI+0OCh] = Ox15 DEST.REG+DEST_STREAM = REG 0x36

-sforce:00BA2966 and eax, OFFh ; 1 Byte Reg

.sforce:00BA296B

.sTorce:00BA296B ###HtHHHHHHHHHHIHHHHHHHH AR AR
.sforce:00BA296B

.sforce:00BA296B

.sforce:00BA296B

.sforce:00BA296B

.sforce:00BA296B .

.sforce:00BA296B mov [ebx+eax*4], esi ; IMOV
INSTRUCTION! - COPY DATA INTO REG

.sforce:00BA296E

.sforce:00BA296E

.sforce:00BA296E

.sforce:00BA296E

.sforce:00BA296E

.sforce:00BA296E #### Obtain Instruction Index i.e find next
instruction ####

.sforce:00BA296E

.sforce:00BA296E mov esi, ecx ; Get Opcode 1
.sforce:00BA2970 .

-sforce:00BA2970 shr esi, 1Bh ; ESI = 13
.sforce:00BA2973 mov ebp, edx ; Get Opcode 2
.sforce:00BA2975 shl ebp, 1Ch

.sforce:00BA2978 shr ebp, 17h ; EBP=0xAO0
.sforce:00BA297B or esi, ebp ; ESI = OxB3,

INDEX = OxB3 1!

.sforce:00BA297D

.sforce:00BA297D

HHHHHHHHH R R
.sforce:00BA297D

.sTorce:00BA297D ####H#H##H# Get Index Decrypt Key #H#HHHHHHHHIHHHHIHHHHIH
.sforce:00BA297D

-sforce:00BA297D mov eax, ecx ; Get Opcode 1
.sforce:00BA297F .

.sforce:00BA297F shl eax, 17h

.sforce:00BA2982 shr eax, 17h

-sforce:00BA2985 and eax, [edi+24h] ; EAX =0

[ED1+24] = 0x20 0&&0x20 = 0O
.sforce:00BA2988
.SsTorce:00BA2988 #Hi#HHHHHHHHHHHHHHHHHHHHHH

.sforce:00BA2988 .
.sforce:00BA2988

-sforce:00BA2988 xor esi, eax

Decrypt with key from opcode, still O0xB3

-sforce:00BA298A

-sforce:00BA298A

.sforce:00BA298A .

.sforce:00BA298A mov eax, [edi+1Ch]

Instruction Table Offset

.sforce:00BA298D mov esi, [eax+tesi*4]

instruction 1D*4

.sforce:00BA2990 add esi, [edi+8]

.sforce:00BA2993 Jmp esi

Instruction

-sforce:00BA2993 sub_BA28C8 endp

StarForce VM RAM

EDI =

Stack[0000033C] :0012E238 dd 12E238h <>

RAM START

Stack[0000033C] :0012E23C dd 12E638h <->

RAM END

Stack[0000033C] :0012E240 dd 0B97000h <->

BASE

Stack[0000033C] :0012E244 dd 15h <>
SRC_REG STREAM - SHL WITH OPCODE DATA

Stack[0000033C]:0012E248 dd 23h <->
DEST_REG STREAM - SHL WITH OPCODE DATA

Stack[0000033C] :0012E24C dd 21D2E4h <->
EIP

Stack[0000033C] :0012E250 dd O <->

Stack[0000033C] :0012E254 dd 0BCC320h <->
INSTRUCTION TABLE

Stack[0000033C] :0012E258 dd 0BA28C8h <->

Stack[0000033C] :0012E25C dd 8 <>
EIP STREAM - ROL/ROR/BTC/BTS/BTR

Stack[0000033C] :0012E260 dd 302h <->
EFLAGS

Stack[0000033C] :0012E264 dd 21D2E4h <->

StarForce Example Data Encoding

98004200
08600135

OPCODE 1 -

Instr | | Instruction Xor

[0x98004200]

Index

; Get

; Add our

; Add VMBASE
; Jdmp to

[EDI+0] WM
[EDI+4] WM

[EDI+8] WM

[EDI+0C]

[ED1+10]

[ED1+14]

[EDI1+18]
[EDI+1C]

[ED1+20]
[ED1+24]

[EDI1+28]

[ED1+2C]

Partl | |
| DESTINATION REG

I
REGISTER STREAM CHANGE DATA

OPCODE 2 - [0x08600135]

Instr | | | Instr
Part2._B]| | | Part2.A
| | |
| | SOURCE REG
| |
|

EIP STREAM CHANGE DATA

I
STREAM CHANGE TYPE

