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 :: INTRO :: 
 
 
This is the first of a series of articles in which I will deal a 
little bit in detail with the windows 2000 kernel. In particular I 
will refer to the stolen sources that have been published. For 
obvious causes I shall not write the code directly in this 
article, but I will make precise references to the files I will 
describe, so if you have the sources you will find easy it easy to 
understand this text. 
 
 
 :: REQUIREMENTS :: 
 
 
Well, first of all it would be good if you have the sources, if 
you don’t have them you can read the article the same as it will 
have a quite generic stamp. Second, you have to know hardware x86 
architecture basics, infact I will not deal with things like IDT 
etc, so get your Intel manuals and study them! Last, I will assume 
you have some basic knowledge about an operating system, that is 
you know what is a file system, what is a scheduler and so on. Now 
we can begin. 
 
 
 :: BIBLIOGRAPHY :: 
 
 
Here are some books on the argument that I advise you to read: 

• The Windows 2000 Device Driver Book - Art Baker, Jerry Lozano 
• Inside Windows 2000 - Russinovich, Solomon (sysinternals) 
• Windows driver model - Oney 
• Windows NT Native Api - Gary Nebbett 
• Undocumented Windows NT - Dabak, Phadke, Borate 
• Windows NT File SYstem Internals - Nagar 
• Windows NT Device Driver Development - Viscarola 

 
 
 :: THE BEGINNING :: 
 
 
The source leak is dated on the first ten days of february, with 
the direct responsibility for it, being Mainsoft; an old partner 
of Microsoft. However, the leak contest is still not very clear. 



Let’s start from the beginning, that is:  
Where can I find these sources? Well you should resolve this by 
yourself! You can search on filesharing networks, or private ftps. 
I do not advise you to use public networks, better if you use some 
crypto p2p network, or if you can find a friend that cand send you 
it.   
How many versions are there? Well there are lots of fakes, however 
the versions are two: one is for windows nt4 sources and the other 
is for windows 2000 sp1 sources. Here we will mainly refer to 
win2k ones, but it would be good for you to have the nt4 as well. 
They are quite different and both have some unique things to them. 
In fact, the first part of the boot process will be described 
using nt4 sources. Clearly the base is the same, so the things we 
will say here are good also on win xp and 2k3. 
Are they complete sources? Not in a strict sense. There is the 
kernel, the userspace dlls (see later), there is even the source 
for the solitaire game! The real bad lack is the ntfs source, it’s 
managed by the relative driver, and its source is not present in 
either of the the sources. However there is still something 
useful, which we will see later. The whole GDI is missing too. 
However, In general we can say that the interesting part (the 
kernel) is complete. 
So can I recompile it? Well the sources are missing some 
definitions and other files, the kernel could be recompiled with 
the help of the ifs kit, but all the usermode code is not 
recompilable. At the time of writing this article, I have no 
knowledge of recompiled windows kernels or similiar things. If you 
know of something like this, or you did it yourself please let me 
know. 
What are these sources useful for? Well not all that much I would 
say. They are useful mainly as a documentation for driver 
developers or windows emulators. In effect, this source package 
makes part of the Microsoft WISE program (Windows Interface Source 
Environment), that is a program that aimes to help developers to 
integrate Windows Based solutions on Unix and Macintosh systems. 
Is it true that the source leak can be a threat for security? 
Absolutely false, although advisors have been quite paranoid on 
this topic. At the moment I write there is no notice of bad bugs 
derived from kernel source analysis. The only bug reported is on 
IE 5, that is the overflow in the bitmaps handling. 
How is the code written, and how is it compiled? The kernel is 
written all in C (not C++) and some parts in asm, the parts 
strictly related to hardware. The applicative usermode code 
instead is mainly written in C++. Obviously the kernel design was 
made with an object oriented mentality.  The code is compiled with 
Visual Studio, clearly not the commercial version but a proper 
version that is only for internal use. 
Will the diffusion of these sources change something at hacking 
level, programmers, final users etc? No, nothing will change. 
Driver developers already have excellent knolwedge of the windows 
kernel (for example: System Internals, OSR, NTDEV etc etc). 
Certainly the sources will enrich the already existing kernel 



documentation, but whoever works in this branch is used to reverse 
engineering, so probably whatever they needed they already learned 
it from kernel reversing ☺. Not many people know in fact that 
Microsft offers the debug symbols of every windows module, so in 
the disassebly of a piece of code like this: 
 
mov  [0x11223344], eax 
push  0x22334455 
call 0x77889900 
 
with debug symbols would be resolved in something like: 
 
mov  [_TickCount], eax 
push _dwSeconds 
call _GetTime 
 
so once you solve the names, then the translation from asm to C is 
really easy. There is not much difference in reading the code 
above or the relative C code: 
 
TickCount = ...blahblah...; 
GetTime(dwSeconds); 
 
What to say? Windows IS opensource, you just have to know how to 
read assembler. Matt Pietrek for example rewrote a lot of the 
windows 9x kernel in pseudo code. The only real progress we will 
see will be in windows emulators, for the rest the windows source 
leak echo is already dead. 
Now that we have a general overview of the argument we can run 
into code details! 
 
 
 :: SOURCE ORGANIZATION :: 
 
If you don’t want to get lost in the sea of code lines you will 
have to make a map of the principal components. First of all we 
see three main directories: 
 
\bsc 
\private 
\public 
 
the first contains the glimpse data for the search engine, the 
last contains sdk and oak, both of scarce interest for us here. 
What we want is the \private, base of all the code. In nt4 sources 
only \private is present. Now this directory as you can see is 
really big! So we are not going to comment it all. Let’s see a map 
of the components: 
 
 
 
 



 
module: ntoskrnl.exe 
location: \private\ntos 
description: windows kernel, the equivalente of bzImage in Linux 
 
module: ntdll.dll 
location: \private\ntos\dll 
description: gateway for um->km transitions (syscalls) 
 
module: kernel32.dll 
location: \private\windows\base\client 
description: usermode part of windows kernel 
 
module: user32.dll 
location: \private\ntos\w32\ntuser\client 
description: various utilities, such as windows creation and text 
manipulation etc 
 
module: advapi32.dll 
location: \private\windows\screg\winreg 
description: registry apis 
 
These are the main components, but we will concentrate 90% on the 
kernel portion. In \private\windows\shell\ you can find the 
sources for regedit, taskmanager, games and other applications. 
There are also other component sources, such as comdlg32 etc. The 
real lack, as previously mentioned, are 
 
ntfs.sys – driver for ntfs 
gdi32.dll – base graphic functions library 
 
In the win2k sources the bootloader is not present, but it is 
present in the sources for nt4, precisely in the directory 
 
 \private\ntos\boot 
 
There you can find the bootsector, ntloader, ntdetect and setup 
loader, each in its own directory. There is the bootsector 
relative to each fs, in particular for ntfs, so here you can find 
good data about an ntfs partition (same data you can find on Nagar 
book). If you are interested in ntfs there are the logfile 
management functions too, which we will see later. Back to the 
win2k code, we find part of the code relative to the net in 
 
 \private\inet 
 
that is part of the IE (mshtml), urlmon, wininet. 
Ok, now we have a general idea of the source structure, if you are 
searching for things I did not mention use a good grep tool. 
 
 
 



 
 :: WE START FROM BOOT :: 
 
Time to begin touching the code! Uhm where are we starting from? 
We start from boot? Ok! As seen above we have to dig into the 
\private\ntos\boot directory. The bootsector itself is located in 
the \bootcode subdirectory, in which every file system has its own 
subdirectory. We can see that the starting point is the \mbr 
subdirectory, that is the physical code that will reside in the 
master boot record. Its the very first piece of operating system 
that is executed at the boot immediately after the bios code (the 
file is x86mboot.asm). As you can see from the comments, it is the 
STANDARD code for every pc.  This code reads the partition table 
at the end of the master boot record, finds the partition marked 
as bootable, copies its bootsector in memory and executes it. The 
master boot record infact has this structure: 
 
   +------------+  -- MBR -- 
   | BootCode   |  Executable Code 
   | Partition1 |  PartitionTable 
   | Partition2 | 
   | Partition3 | 
   | Partition4 | 
   +------------+  -- END MBR -- 
   | Partition1 |  Partitions 
   |            | 
   .            . 
   .            . 
 
So the bootcode will just relocate to the address 0000:0600, jump 
to relocated code, read the bootable entry from the partition 
table, copy its bootsector in memory at standard boot address 
(0000:7C00), and finally execute it. So it is as if the bios 
itself had booted the partition directly. Uhm, note that in 
x86mboot.asm at line 48, that after that, the code auto relocates 
at address 0000:0600, to jump to it there is used a far jmp which 
is hand encoded as you can see here: 
 
 db OEAh 
 db ...blabla... 
 
Those are the bytes relative for the opcode of the JMP 0000:0600 
instruction, whose address is resolved at compile time. You will 
find again this hand coded opcode later, when the bootable 
partition is found.  The code will jump again to 0000:7C00 to boot 
the new bootsector. At this point the code changes, as we have a 
different piece of code for every supported file system: 
 
 \etfs  Electronic Tariff Filing System 
 \fat   fat32 
 \hpfs  Pinball File System (high performance file syste, os2) 
 \ntfs  nt native file system 



 \ofs   surprise! Void directory! 
 
Well just fat32 and ntfs are really supported, and it is really 
not good that you install windows nt on a fat32 partition. Now we 
can concentrate on the ntfs bootsector, as other bootsectors work 
the same way. The role of this piece of code (ntfsboot.asm) is 
simply to read the ntldr file, map it to the address 2000:0000 and 
execute it. Note that we are still in real mode, so all the code 
is still 16 bit. As we can see this code is a bit too large and 
cannot stay in the 512 bytes of the first sector: in fact the bios 
maps the first physical sector of the bootdisk (track 0, head 0, 
sector 1) in memory at physical address 7C00. Well the bios now 
did not really map in memory the first sector of the bootable 
partition, rather the mbr code did it. Why does this code not map 
all necessary code for ntfsboot which is bigger than 512 bytes? 
Obviously for compatibility with other systems. So the just mapped 
ntfsboot now has the immediate task of mapping all it’s other 
code. In fact, the code begins reading from the first sector, 
through all of the bootsector and relocates it to address 
0D00:0000, so we have in memory at that address the bootsector and 
following sectors that contain needed code. Once the code is 
mapped, it jumps to 0D00:0200, that is to the second sector that 
has been read from the disk (the first one was already executed so 
it is no longer useful). This code is at physical address D200h, 
and is far below the address 20000h where the ntldr will be 
mapped, so there is no interference problems. Again we see that 
the jump to the newly relocated code is made (at line 165) with 
this code: 
 
 push seg 
 push offset 
 ret 
 
Hehe, it seems they had some problem in writing far jmps! Ok 
nothing important, just a curiosity. So now the execution moves to 
the second sector at the mainboot procedure. Before this procedure 
in the code we can see some data and the “55AA” signature that is 
at the end of the first sector. The mainboot procedure reads the 
ntldr file (you can see several functions to read ntfs to find 
that file), and at the end it returns the execution to the ntldr 
memory image, that as we said above is located at 2000:0000. The 
bootsectors relative to other file systems act the same way, only 
the code that reads ntldr data from the disk changes from system 
to system. Now we have to move to the ntldr code. Note that until 
now there has been no initialization, like paging abilitation, 
switching to protected mode, etc. We are still in real mode, so 
ntldr starts its executions at 16bit, and then will make the 
passage to protected mode and so to 32bit. Ok now the file we are 
examinating is 
 
 \ntos\boot\startup\i386\su.asm 
 



Do remember that we still are in nt4 sources. We see that the 
first line is a jmp RealStart. Among this jmp and the routine 
itself we can see some code concerning FAT. If the system was 
booted from FAT32, the code would still have to handle the ntldr 
reading and mapping before executing it. In this case we are 
considering ntfs, so we dont care of other FAT32 problems. The 
RealStart routine just prepares stack and segments to pass the 
execution to the procedure SuMain that is located in the file 
 
 \ntos\boot\startup\i386\main.c 
 
Finally we come to some C code! However, keep the file su.asm in 
mind, because it exports the protected mode enabling function that 
we will see in a while. This procedure initializes the video 
subsystem (InitializeVideoSubSystem in display.c), turns off 
floppy motor in case the system was booted from floppy 
(TurnMotorOff in su.asm), makes other initialization works, such 
as calculating the size of necessary memory for os loader, then 
after this stuff we get to the main point: the switching to 32bit.  
 
Infact we see that the code enables the A20 line (EnableA20 in 
a20.asm) and relocates the IDT and GDT structures that will be 
used in protected mode. So now it’s time to switch to protected 
mode (EnableProtectPaging in su.asm). Note that the first time the 
code is executed, the paging will not be enabled, in fact the 
startup loader still has not determined a valid descriptor for PDE 
and PTE. The paging enabling will be done at the beginning of the 
os loader code that we will see soon. In particular we see that 
the code sets the selector for the PCR in the segment FS, that is 
the Process Control Region, a fundamental structure for the 
kernel, so we expect that soon the code will pass execution to the 
ntoskrnl.exe module. Besides, the memory areas for IDT and GDT 
have been set, while the LDT is zeroed. Windows NT infact, does 
not use LDT, opposed to consumer windows. So the code for the 
protected mode is: 
 
  mov     eax, c30 
  ...     (first time the paging enabling is avoided) 
  or      eax,PROT_MODE 
  mov     cr0,eax 
 
But it still does not have all the switching to full 32bit 
finished, as now the code is setting segments, structures and the 
TSS descriptor. The execution comes back to the SuMain after the 
protected mode switching. The SuMain calls the 
RelocateLoaderSections functions to calculate the correct address 
where the entry point of the os loader is. This is infact a valid 
coff PE, and it is embedded inside the ntldr, so we can consider 
it the first real process that windows executes. Once its entry 
point is found the execution passes to it with the function 
TransferToLoader using as an entry point the just computed 
address. So now we move to the directory: 



 
 \ntos\boot\lib\i386 
 
where there are the files we are going to execute. In particular, 
the file: 
  
 entry.c 
 
This is the entry point of the just mentioned PE, and it is 
identified by the function NtProcessStartup. Let’s analize it, and 
we will see that the first called function is 
DoGlobalInitialization. Also here we can see that there is a 
function call: InitializeMemorySubsystem. Sounds interesting! 
Parenthesis: many functions use as a parameter the 
BootContextRecord, a structure whose declaration is made in 
bootx86.h (_BOOT_CONTEXT structure). Let’s go back to the 
InitializeMemorySubsystem in the file memory.c. In this file we 
also find a memory map (components images and related stacks / 
heaps) that can be useful. This function has immediatly a while 
that cycles for all MemoryDescriptor that are located in the 
BootContextRecord. Each memory descriptor, infact, is a structure 
with two fields: BlockBase & BlockSize. They describe the starting 
address of a memory area and its size. So  
 
BootContext->MemoryDescriptorList 
 
is an array of memory descriptors that are used to describe all 
the memory blocks that are needed. Remember that now we are in 
protected mode but with no paging, so at this moment every address 
we use corresponds to a physical address. So this “while” prepares 
memory addresses (respecting the page boundary) for all known 
memory blocks. The loader does not use memory that is above 16mb 
(to avoid interference with isa bus data transfers), so all the 
memory above 16mb is marked as MemoryFirmwareTemporary. Once the 
code exits the while, all physical memory has been described (with 
MempAllocDescriptor & MempSetDescriptorRegion functions), the 
descriptor array is maintained in the variable MDArray[] defined 
in arcemul.c. These are the “macro” descriptors that makes an 
approssimative description of physical memory, so after the while 
there is portion of code that handles the description of the first 
megabyte of memory. In fact, here there are all the memory 
components useful to the loader, such as the interrupt vector 
area, system heaps etc. Note that the first virtual memory 
megabyte will coincide with the first physical memory megabyte, to 
permit the os loader to continue the execution below first mega 
and map the kernel dedicated memory. Again with 
MempAllocDescriptor we can see that from the initial MDArray, some 
subdescriptors are obtained for the memory areas below a mega. 
When all the creation of this descriptor is finished we finally 
reach the MempTurnOnPaging. This function just makes a walk of the 
MDArray so it can call MempSetupPaging function, with which the 
PDE\PTE entries are created for all the necessary memory that was 



just calculated. The global variables are PDE for the PDE, and 
HalPT for the PTE. Once the memory descriptor walk is made, the 
PDE\PTE is correctly set, so the MempTurnOnPaging is called: 
 
        mov eax,PDE 
        mov cr3,eax 
 
        mov eax,cr0 
        or  eax,CR0_PG 
        mov cr0,eax 
 
and the paging is enabled. This is the first time paging is 
enabled since the system was booted. As you can see, the ptr to 
the PDE array is placed in the page directory base register (CR3), 
son in CR0 is enabled the flag relative to the paging. After the 
paging is enabled we come back to the InitializeMemorySubsystem 
function, that calls MempCopyGdt to move GDT and IDT in a new 
memory area. Ok now the function is finished and we can go back to 
DoGlobalInitialization. We see that there is other stuff and 
finally the call to InitializeMemoryDescriptors function, that as 
we can see from the comments is the second step of the 
InitializeMemorySubsystem. First the PDE\PTE were created to turn 
on paging, now this function comes back to the MDArray and 
allocates the memory for all descriptors that marked the memory as 
“reserved”. Now we’ve finished the DoGlobalInitialization. We head 
back to the NtProcessStartup. We have some other initialization 
functions, that find the partition from where we booted, 
initialize the system memory and I/O system, then we arrive at the 
call to BlStartup. Immediatly after there is this code: 
 
    // we should never get here! 
    do { 
        GET_KEY(); 
    } while ( 1 ); 
 
 
So this means that ntldr work ends inside the BlStartup function, 
that is located in the file initx86.c in the directory 
 
 \ntos\boot\bldr\i386 
 
What does this function do? It takes care of opening the drive and 
reading the boot.ini file, where all bootable entries are defined. 
Such entries are shown with the classic choose menu, so once the 
boot entry is chosen the os determines disk/partition/path to 
boot, and then arrives at the function BlOsLoader which is located 
in the file 
 
 \ntos\boot\bldr\osloader.c 
 
We can see just before this function the definition of the names 
"ntoskrnl.exe" and "hal.dll", these will be the components that 



will be loaded. As you can see the code is well commented, so it’s 
easy to understand what happens: it opens the boot and system 
partitions, it opens the input/output console, it initializes the 
memory with BlMemoryInitialize, present in the directory 
 
\ntos\boot\lib 
 
in the file blmemory.c, where we find intialized, the stack, the 
heap and the memory allocation list. In this case the unique 
memory descriptor that has been allocated is the one relative to 
the os loader, in fact no other programs have been loaded. So the 
function will search the first memory descriptor below the os 
loader, and will allocate the heap at the highest possible 
address, allocate the space for the loader parameter block, then 
the loader stack, and finally the loader heap. After the memory 
init we see other initializations (i/o and resource section).  So 
we see that there is the handling of the boot parameters that were 
specified in the boot.ini, in fact the parameters /KERNEL= /HAL= 
are handled, that permit to load a kernel/hal different from the 
default ones. So now the paths of the kernel and hal components 
and of the system hive are generated. The first one to be loaded 
is ntoskernel.exe with the function BlLoadImage that maps its 
image in memory. So the loader determines the type of fs used and 
keeps eventual arguments to pass to the kernel. Now it is the turn 
of hal.dll, which is loaded with BlLoadImage as well. Remeber that 
these two modules are PE coffs, in fact the loader function is in  
 
 \ntos\boot\lib\peldr.c 
 
It is not the complete pe loader, in fact immediately after in the 
code is used the function BlScanImportDescriptorTable: with this 
the imported dll are loaded and the import/export are bound. So 
now the kernel, hal and all relative modules are loaded. It’s now 
time to load the drivers. To load the drivers the osloader must 
consult the system hive. What is this hive? Hives are the file 
that contains the information stored in the registry. In 
particular now the 
 
 \windows\config\system 
 
hive is used. It contains all hardware settings and realtive 
drivers. Once the drivers are loaded, the BlSetupForNt is called: 
It makes some hardware initialization, such as abios relocation, 
tss relocation, etc. Finally the loader has finished its role, and 
we arrive at the line: 
 
 (SystemEntry)(BlLoaderBlock); 
 
This line calls the entry point of the ntoskrnl module. From now 
on we can pass to the win2k sources (we still were in the nt4 
ones!).   
 



The kernel entry point is located in the file: 
 
 \win2k\private\ntos\ke\i386\newsysbg.asm 
 
and the function is KiSystemStartup. It takes as a argument the 
loader block mentioned some lines above. 
 
This first part ends here. We have seen the initial portion now, 
the boot process. We arrived at the kernel, so in the next part we 
will describe kernel initialization and other more interesting 
stuff. 
 
See ya in next chapter! 
 
AndreaGeddon 
 
 
 


