
“...And a pinch of Delphi”

Originally published on 2003-10-30

Getting an overview

Attachment, genme.exe, 806912 bytes, 491E6EE050644FF76F0FC05E8F2683F5

Since our goal is to write a keygen for this target that is really what we should be

focusing on. However, the crackme's readme file already mentioned two strategies used

in the protection, namely anti-debugging and integrity checking through CRC. I thought

we'd have a look at these first because the anti-debugging might be interfering with our

examination of the serial algorithm.

There are two basic ways for a binary to perform integrity checks on itself. It calculates a

checksum from either the disk image or from the process image, which it compares to a

good checksum. In the case of our target it uses the CRC32 algorithm on part of the disk

image. We are in luck here, because to calculate the checksum of a disk image the

process has to somewhere request a handle to the file to be able to access the data in it. A

few protections use the obsolete _lopen() function exported from kernel32.dll to open

files. This is mostly because modern (compiled) binaries wouldn't normally use that

function and thus the reverser might not think of looking for it. Our target, however, uses

the normal and much expected CreateFileA(), also a function residing in kernel32.dll.

To find the routine that does integrity checking, load our target into a debugger and put a

breakpoint on CreateFileA(). Whenever you're using software breakpoints I recommend

disassembling the API quickly and putting the actual breakpoint a few instructions into

the API. This is because some protections might be checking the API's entry point to

make sure it is clean from breakpoints.

Once the breakpoint triggers view the stack to see what parameters were passed to

the function. In this case we need the ASCII string passed to CreateFileA() to be the full

path and filename of our target. Step out and you will be smack in the middle of the

routine we were looking for.

The routine that performs integrity checking starts at VA 454784. I won't show it in its

entirety because the code is very clean and easy to follow. The disk image is first

memory mapped before the actual CRC32 routine takes over:

00454840004548400045484000454840 MOV EDX, EBP // *data
00454842004548420045484200454842 LEA EAX, DWORD PTR SS:[ESP+4] // *sum
00454846004548460045484600454846 MOV ECX, DWORD PTR DS:[45BC5C] // length
0045484C0045484C0045484C0045484C CALL 004548B0_CRC32_Update

CRC32_Update is a table-driven implementation of CRC32 that supports operating on

streaming data. The reason for using two streams of data is simple; if you were to

calculate a checksum for the file containing the checksum you could never synchronize it.

Whenever you have the correct checksum and write it back to the binary you

automatically invalidate it. In this implementation a small block of data (0x24 bytes long)

from the PE “DATA” section is excluded from the calculations. One thing that struck me

as odd is the initial value of the “sum” variable. Normally you use a long with all bits set

(0xFFFFFFFF), but instead a value of 0xFFF00FFF is being used.

The code responsible for integrity checking is in fact a component,

TOgProtectExe, which is part of the TurboPower OnGuard package.

The critical point where the checksum gets verified is at VA 454878. If the checksum is

found to be invalid the application exits silently after a while. This is at VA 452ACF,

using PostQuitMessage(). It is, by the way, the same routine used for exiting from the

anti-debugging code.

The anti-debugging routine is executed once during start-up but the interesting thing is

that a timer is used for also executing it repeatedly. The timer object is based on

"TPUtilWindow" and there are two timers all in all in this application; one for the anti-

debugging and another one for on-mouse-over effects on the buttons. Delphi has set it up

so that a common top-level message dispatcher at VA 41CD10 connects to all window

procedures. This approach works well because all windows in the application have been

instantiated from their respective templates, allowing the dispatcher to branch smoothly.

The "TPUtilWindow" windows share the same basic window procedure at VA 42B7D0

because they are both timers. The anti-debugging timer is set up using SetTimer() and has

a sleep count of 50 milliseconds between each time it triggers. The only message that is

filtered out and acted upon is WM_TIMER, all others are passed on to

DefWindowProcA(). Every once in a while the message is WM_TIMER and execution

can be seen worming its way down through the layers, finally arriving at VA 45A554.

We have found the anti-debugging routine! Here's a snippet of the effective code:

0045A5920045A5920045A5920045A592 PUSH EAX // *symbol
0045A5930045A5930045A5930045A593 PUSH EBX
0045A5940045A5940045A5940045A594 CALL GetProcAddress
0045A5990045A5990045A5990045A599 MOV EDI, EAX
0045A59B0045A59B0045A59B0045A59B MOV ESI, EDI
0045A59D0045A59D0045A59D0045A59D TEST EDI, EDI // win98+ ?
0045A59F0045A59F0045A59F0045A59F JZ 0045A5A7_abort
0045A5A10045A5A10045A5A10045A5A1 CALL ESI
0045A5A30045A5A30045A5A30045A5A3 MOV EBX, EAX
0045A5A50045A5A50045A5A50045A5A5 JMP 0045A5CF_finale

GetProcAddress() is used to dynamically retrieve the address of IsDebuggerPresent(). If

the return value is 0, meaning the function is unknown and not exported from the

suggested library, the routine will abort. This happens in Windows 95, Windows NT 3.5

etcetera, relieving users of these operating systems from the anti-debugging.

A few lines up you will find something a little more interesting:

0045A5780045A5780045A5780045A578 LEA ECX, DWORD PTR SS:[EBP-4] // **buffer
0045A57B0045A57B0045A57B0045A57B MOV EDX, 0B9 // xor key
0045A5800045A5800045A5800045A580 MOV EAX, 0045A614 // *string
0045A5850045A5850045A5850045A585 CALL 0045A4B8_Decrypt_String

You might have attempted to extract all strings in our target and noticed that some strings

available at run-time could not be found in the binary. That's because all important strings

were encrypted at compile-time. The good news is that there is only one function used for

decrypting the strings. And we know where it is.

The anti-debugging code can be observed decrypting two strings,

"IsDebuggerPresent" and "GetProcAddress". We can find the encrypted versions of these

strings at VA 45A614 and VA 45A630, respectively. A reasonable guess is that

0045A4B8_Decrypt_String will lead us to the serial algorithm. I propose a conditional

breakpoint that breaks only when a string other than those already seen, is being

decrypted. Something like: (when) EAX != 45A614 && EAX != 45A630.

The serial algorithm

Using the above conditional breakpoint technique you will find the serial routine and can

confirm that it starts at VA 45A7C4. One thing you will see when working with Delphi

applications is a common gateway for communicating with and controlling the

application's windows. In this snippet 00432F0C_Get_Text wraps around it:

0045A0045A0045A0045A7E47E47E47E4 LEA EDX, DWORD PTR SS:[EBP-4] // **buffer
0045A7E70045A7E70045A7E70045A7E7 MOV EAX, DWORD PTR DS:[EBX+2FC] // object
0045A7ED0045A7ED0045A7ED0045A7ED CALL 00432F0C_Get_Text
0045A7F20045A7F20045A7F20045A7F2 MOV EAX, DWORD PTR SS:[EBP-4] // *buffer
0045A7F50045A7F50045A7F50045A7F5 CALL 004045D4_Pascal_Strlen
0045A7FA0045A7FA0045A7FA0045A7FA TEST EAX, EAX
0045A7FC0045A7FC0045A7FC0045A7FC JLE 0045A8A6_abort

Tracing into 00432F0C_Get_Text, you will eventually end up at VA 437254 where you

can see the actual directions/requests being sent using CallWindowProcA(). When

reading the text of a window, the WM_GETTEXTLENGTH message is first sent and

shortly thereafter follows a WM_GETTEXT message.

The code that does the actual serial generation is located in a subroutine starting at VA

45A640. Important parts of the code include:

0000045A66B045A66B045A66B045A66B XOR EBX, EBX

...

0045A67A0045A67A0045A67A0045A67A MOV DWORD PTR SS:[EBP-8], EAX // name length + 1
0045A67D0045A67D0045A67D0045A67D XOR EDI, EDI

0045A67F0045A67F0045A67F0045A67F MOV EAX, DWORD PTR SS:[EBP-4] // pointer to name

0045A6820045A6820045A6820045A682 MOVZX EAX, BYTE PTR DS:[EAX+EDI-1] // grab character
0045A6870045A6870045A6870045A687 ADD EAX, EAX // multiply by 2

0045A6890045A6890045A6890045A689 ADD EBX, EAX // add to total
0045A68B0045A68B0045A68B0045A68B MOV EAX, DWORD PTR SS:[EBP-4]
0045A68E0045A68E0045A68E0045A68E CALL 004045D4_Pascal_Strlen
0045A6930045A6930045A6930045A693 SUB EAX, EDI
0045A6950045A6950045A6950045A695 MOV EDX, DWORD PTR SS:[EBP-4]
0045A6980045A6980045A6980045A698 MOVZX EAX, BYTE PTR DS:[EDX+EAX-1] // grab character
 // from the right
0045A69D0045A69D0045A69D0045A69D MOV ECX, 3
0045A6A20045A6A20045A6A20045A6A2 XOR EDX, EDX
0045A6A40045A6A40045A6A40045A6A4 DIV ECX // divide char
 // value by 3

0045A6A60045A6A60045A6A60045A6A6 ADD EBX, EAX // add to total

0045A6A80045A6A80045A6A80045A6A8 INC EDI // string index
0045A6A90045A6A90045A6A90045A6A9 DEC DWORD PTR SS:[EBP-8]
0045A6AC0045A6AC0045A6AC0045A6AC JNZ 0045A67F // loop?

0045A6AE0045A6AE0045A6AE0045A6AE XOR EBX, 1 // switch parity
0045A6B10045A6B10045A6B10045A6B1 SHR EBX, 3 // divide total by 8
0045A6B40045A6B40045A6B40045A6B4 MOV EAX, DWORD PTR SS:[EBP-4]
0045A6B70045A6B70045A6B70045A6B7 CALL 004045D4_Pascal_Strlen
0045A6BC0045A6BC0045A6BC0045A6BC SHL EAX, 2 // multiply length
 // of name by 4

0045A6BF0045A6BF0045A6BF0045A6BF ADD EBX, EAX // add to total

Note that the code at VA 45A682 operates out of bounds, reading "before" the string. So

does the code at VA 45A698. The byte read is in practice always zero because of the way

string objects are stored in Pascal/Delphi. Also note that the characters in the entered

name are treated as unsigned.

The next couple of lines and the routines called perform a "printf" and more. The value of

'total' (treated as signed) is first written out as a string in decimal format. It is then

truncated at 5 characters. If the string is less than 5 characters wide it is padded on the left

with "0" until it is exactly 5 characters wide. Moving on beyond that you will see:

0045A7150045A7150045A7150045A715 MOV EAX, DWORD PTR SS:[EBP-4] // pointer to name
0045A7180045A7180045A7180045A718 CALL 004045D4_Pascal_Strlen
0045A71D0045A71D0045A71D0045A71D SAR EAX, 1 // divide by 2
0045A71F0045A71F0045A71F0045A71F JNS 0045A724
0045A7210045A7210045A7210045A721 ADC EAX, 0

Since the length of the name will never have its 32nd bit set, it can never be interpreted as

signed, and the SAR in effect does a division by two.

0045A7240045A7240045A7240045A724 TEST EAX, EAX
0045A7260045A7260045A7260045A726 JNZ 0045A733 // jump is taken
 // if name is
 // two characters
 // or longer

0045A7280045A7280045A7280045A728 MOV EAX, ESI
0045A72A0045A72A0045A72A0045A72A MOV EDX, DWORD PTR DS:[ESI]
0045A72C0045A72C0045A72C0045A72C CALL 00404370_HLL_management
0045A7310045A7310045A7310045A731 JMP 0045A75D

0045A7330045A7330045A7330045A733 MOV EAX, DWORD PTR SS:[EBP-4] // pointer to name
0045A7360045A7360045A7360045A736 CALL 004045D4_Pascal_Strlen
0045A73B0045A73B0045A73B0045A73B SAR EAX, 1 // divide by 2
0045A73D0045A73D0045A73D0045A73D JNS 0045A742
0045A73F0045A73F0045A73F0045A73F ADC EAX, 0

0045A7420045A7420045A7420045A742 MOV EDX, DWORD PTR SS:[EBP-4]
0045A7450045A7450045A7450045A745 MOV DL, BYTE PTR DS:[EDX+EAX-1] // grab character
0045A7490045A7490045A7490045A749 LEA EAX, DWORD PTR SS:[EBP-18] // **temp_buffer
0045A74C0045A74C0045A74C0045A74C CALL 004044FC_Store_Character
0045A7510045A7510045A7510045A751 MOV EDX, DWORD PTR SS:[EBP-18] // *temp_buffer
0045A7540045A7540045A7540045A754 MOV ECX, DWORD PTR DS:[ESI] // *serial
0000000045A75645A75645A75645A756 MOV EAX, ESI // **serial
0045A7580045A7580045A7580045A758 CALL 00404620_Concatenate_Strings

The serial is appended to character from temp_buffer, thereby forming a new serial.

0045A75D0045A75D0045A75D0045A75D MOV EAX, DWORD PTR SS:[EBP-4] // pointer to name
0045A7600045A7600045A7600045A760 CALL 004045D4_Pascal_Strlen
0045A7650045A7650045A7650045A765 MOV EDX, DWORD PTR SS:[EBP-4]
0045A7680045A7680045A7680045A768 MOV DL, BYTE PTR DS:[EDX+EAX-1] // grab last char
0045A76C0045A76C0045A76C0045A76C LEA EAX, DWORD PTR SS:[EBP-1C] // **temp_buffer
0045A76F0045A76F0045A76F0045A76F CALL 004044FC_Store_Character
0045A7740045A7740045A7740045A774 MOV EDX, DWORD PTR SS:[EBP-1C] // *temp_buffer
0045A7770045A7770045A7770045A777 MOV EAX, ESI // **serial
0045A7790045A7790045A7790045A779 CALL 004045DC_Concatenate_Strings

Character in temp_buffer is appended to the serial number.

0045A70045A70045A70045A77E7E7E7E LEA EDX, DWORD PTR SS:[EBP-20] // **final_serial
0045A7810045A7810045A7810045A781 MOV EAX, DWORD PTR DS:[ESI] // *serial
0045A7830045A7830045A7830045A783 CALL 004082EC_Uppercase_String

Reflections

...All too many to make sense. I'll leave you with just one more observation: the text on

the main form is not scrolled using a timer. The latency introduced in scrolling is caused

by invoking the Sleep() API function. You should be able to confirm this by putting a

breakpoint on CreateThread() as you start the target.

You may contact the author of this short essay via sna@reteam.org

